MAT8034: Machine Learning

Generalization

Fang Kong
https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Part of slide credit: Stanford CS229


https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Outline

Intuition

Bias-variance tradeoff

The double descent phenomenon
Sample complexity bounds



Intuition



Intuition

= Recall in previous classes

* We typically learn a model hg by minimizing the training loss/error

1 . N 2
“ Jo = 2584 (ho (x®) = y©)
" This is not the ultimate goal

" The ultimate goal

= Sample a test data from the test distribution D
= Measure the model’s error on the test data (test loss/error)

L(0) = E(w,y)wD[(y — he(x))z]
= Can be approximated by the average error on many sampled test examples



Challenges

" The test examples are unseen

= Even though the training set is sampled from the same distribution D, it can not
guaranteed that the test error is close to the training error

=" Minimizing training error may not lead to a small test error
= Important concepts

= Overfitting: the model predicts accurately on the training dataset but doesn’t
generalize well to other test examples

= Underfitting: the training error is relatively large (typically the test error is also
relatively large)

" How the test error is influenced by the learning procedure,
especially the choice of model parameterizations?



Bias-variance tradeoff



Problem setting
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" The training inputs are randomly chosen
= The outputs are generated by ¢ = h*(:z:(i)) + £0)

" h*(+): a quadratic function
= ED<N(0,02): noise

= Qur goal is to recover the function A™(+)
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How about fitting a linear model?
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Figure 8.2: The best fit linear model has large training and test errors.

" The true relationship between y and x is not linear
" Any linear model is far away from the true function
" The training error is large, underfitting



How about fitting a linear model? (cont’d)

0 fitting linear models on a large datast 1 ;itting linear models on a noiseless dataset

x  training data x X 2 ' x  training data
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Figure 8.3: The best fit linear  Figure 8.4: The best fit linear
model on a much larger dataset  model on a noiseless dataset also
still has a large training error. has a large training/test error.

* Fundamental bottleneck: linear model family’s inability to capture the
structure in the data

* Define model bias: the test error even if we were to fit it to a very (say,
infinitely) large training dataset



How about a 5th-degree polynomial?
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Figure 8.5: Best fit 5-th degree polynomial has zero training error, but still
has a large test error and does not recover the the ground truth. This is a
classic situation of overfitting.

Predict well on the training set, does not work well on test examples



How about a 5th-degree polynomial? (cont’d)

fitting 5-th degree model on large dataset
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= When the training set becomes huge, the model recovers the ground-
truth



How about a 5th-degree polynomial? (cont’d)

fitting 5-th degree model on different datasets
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Figure 8.7: The best fit 5-th degree models on three different datasets gen-
erated from the same distribution behave quite differently, suggesting the
existence of a large variance.

= Failure: fitting patterns in the data that happened to be present in the
small, finite training set (NOT the real relationship between x and y)

" Define variance: the amount of variations across models learnt on multiple
different training datasets (drawn from the same underlying distribution)



Bias-variance trade-off

/—-— Optimal Tradeoff Test Error (= Bias? +Variance)
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Figure 8.8: An illustration of the typical bias-variance tradeoft.



Bias-variance trade-off (cont’d)
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Figure 8.9: Best fit quadratic model has small training and test error because
quadratic model achieves a better tradeoff.



A mathematical decomposition (for regression)
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Problem setting: regression

= Draw a training dataset S = {z(®,y(®}? . such that y® = h*(z(?) 4 £
where £ € N(0,0?).

" Train a model on the dataset S, denoted by hg.

= Take a test example (z,y) such that y = h*(z) + £ where £ ~ N(0, 02),
and measure the expected test error (averaged over the random draw of
the training set S and the randomness of £

MSE(z) = Es¢[(y — hs(z))’] (8.2)



Decomposition

" MSE(z) = E[(y — hs(2))"] = E[(§ + (h*(z) — hs(@)))"]

[ 1 + E[(h*(z) — hs(z))]
o? + E[(h*(z) — hs(x))’]

= Define hgy,(x) = Eg[(hs(x))]

* The model obtained by drawing an infinite number of datasets, training
on them, and averaging their predictions on x

" MSE(z) = o + E[(h*(z) — hg(x))?]
= 0+ (*(2) — hasg(@))? + El(havg — hs(@))”

= 0 +(W(®) — hay(2))’ +var(hs(z))

N
. A 3
A bi as2 = varlance

unavoidable



The double descent phenomenon
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Observation

= Previous works show that

Optimal Tradeoff Test Error (= Bias2 +Variance)

/ BI832

Model Complexity

Error

Figure 8.8: An illustration of the typical bias-variance tradeoff.

" |Interestingly, the bias-variance tradeoff curves or the test error
curves do not universally follow the shape



Model-wise double descent

"= Recent works demonstrated that the test error can present a
“double descent” phenomenon in a range of machine learning
models including linear models and deep neural networks

classical regime: modern regime:

bias-variance tradeoff over-parameterization
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Sample-wise double descent

= Recent work observes that the test error
is not monotonically decreasing when
the sample size increases

= The test error first decreases

" Then increases and peaks around when the
number of examples is similar to the number
of parameters (n = d)

" And then decreases again

= Sample-wise double descent and model-wise
double descent are essentially describing
similar phenomena—the test error is peaked
whenn = d
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Explanation

= The observation illustrates that

" Existing training algorithms evaluated in these experiments are far from
optimal whenn = d

= How to be better?

" Tossing away some examples and run the algorithms with a smaller
sample size to steer clear of the peak

* With an optimally-tuned regularization, the test errorinthen = d
regime can be dramatically improved



Regularization

= Using the optimal regularization Test Risk for Regularized Regression

parameter A (optimally tuned
for each n, shown in green solid
curve) mitigates double descent
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Explanation for overparameterization

= A typical explanation

= Commonly-used optimizers such as gradient descent provide an implicit
regularization effect
" |[ntuition: even in the overparameterized regime and with an

unregularized loss function, the model is still implicitly regularized, and
thus exhibits a better test performance than an arbitrary solution that

fits the data.

" For example: GD with zero initialization finds the minimum norm
solution that fits the data (in-stead of an arbitrary solution that fits the
data)



Complexity measure of the model

" The double descent phenomenon has been observed when the
model complexity is measured by the number of parameters

" |t is unclear if and when the number of parameters is the best
complexity measure of a model

test error vs. # params norm vs. # params test error vs. norm
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Sample complexity bounds
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Objective

= Some gquestions
= Can we relate error on the training set to generalization error?
= Can we make formal the bias/variance tradeoff that was just discussed?

= Are there conditions under which we can actually prove that learning
algorithms will work well?



Useful lemmas

® Lemma. (The union bound). Let A;, As, ..., Ax be k different events (that
may not be independent). Then

P(AiU---UAg) < P(A) +...4+ P(Ag).

" Lemma. (Hoeffding inequality) Let Zi,...,Z, be n independent and iden-
tically distributed (iid) random variables drawn from a Bernoulli(¢) distri-
bution. Le., P(Z;=1)=¢,and P(Z; =0)=1—¢. Let ¢ = (1/n) > ._, Z;
be the mean of these random variables, and let any v > 0 be fixed. Then

P(|¢ — @| > ) < 2exp(—27°n)



Problem setting

To simplify, consider the classification problem with y € {0,1}
Training set § = {(xi,yi); i =1,2,...,n}, drawn iid from D

For hypothesis h, define training error (empirical risk/error)
1 & | .
A(h) — (%) (%)
() = Sk #4°)

Define the generalization error e(h) = Py, ~p(h(z) # y)

One of PAC assumption: training
nd testing set are from the same D




Problem setting (cont’d)

Consider the linear classification hg(x) = 1{6 "x > 0}

Objective: minimize the training error

A e empirical risk
6 = arg min E(hg)

h = hy

In learning theory, it will be useful to abstract away from the
specific parameterization of hypotheses

Define the hypothesis class H, for linear classification
H = {h@ : h@(.’]?) = 1{(9T.73 > O},H = Rd_H}



Problem setting (cont’d)

* ERM becomes finding A = arg Ihnl?il E(h)
S

" For simplicity, first consider the finite hypothesis set

H={hy,... )

= Now, show the guarantee for the generalization error of h
» 1. Vh, €(h) is a reliable estimate of (h)

= 2. h guarantees good generalization error



Guarantee for a fixed hypothesis function

Fix any hypothesis function h; € H
Define Z; = 1{hi(xj) = yj}

The training error is

The empirical mean of n random variables with expectation £(h;)
Applying Hoeffding inequality,
P(le(hi) — é(hs)] > ) < 2exp(—2y7n)



Guarantee for any hypothesis function

s P(AheH|e(h) —é(h)|>v) = P(A U---U A

k
<y
i=1
k
< ZQeXp 2y
i=1
= 2kexp(—27°n)

" ThUS P(‘E'h < H|€(hz) — é(hz” > ’)/)



Corollaries

" How large must n be before we can guarantee that with
probability at least 1 — 0, training error will be within y of
generalization error? (sample complexity)

" What is the distance between the training error and
generalization error with training set size n and confidence 67?



Guarantee for the output hypothesis function

A

Recall h = arg mingey E(h)

Define the best hypothesisis h* = arg mingecy £(h)

A

Then €(h) é(il) + 7y
E(h*) +
e(h*) + 2

If uniform convergence occurs, then the generalization error of h
Is at most 2y worse than the best possible hypothesis in H'!

IA AN



Theorem of generalization error

= Theorem. Let |H| =k, and let any n,d be fixed. Then with probability at
least 1 — d, we have that

e(h) < (%17216 > + 2\/— log —

= Explanation of bias/variance

= |f we switch to a larger function class H' 2 H
" The first term decreases: lower bias
* The second term increases as k increases: higher variance



Corollary of sample complexity

= Corollary. Let [#| = k, and let any 6,7 be fixed. Then for e(h) <
mingey €(h) 4+ 279 to hold with probability at least 1 — 6, it suffices that

1102k
n g5

22

1 k
- 0(gmrg)



Extension to infinite H : Intuition

Usually the hypothesis set is infinite

" For example, the linear function set contains a infinite number of

parameters

Suppose H is parameterized by d real numbers

The computer uses 64 bits to represent a floating point number

H contains 2%4¢ different hypotheses

Existing results show that with fixed y, 0

n > 0(71—210g

264d
)

)= o0 (zs1)

07,5 (d)



VC dimension

= Shatter

Given a set S = {2z, ..., )} (no relation to the training set) of points
) € X, we say that H shatters S if H can realize any labeling on S.
Le., if for any set of labels {yV),...,yP)} there exists some h € H so that
h(z®) =y@ for alli =1,...D.

= \/C dimension

Given a hypothesis class H, we then define its Vapnik-Chervonenkis
dimension, written VC(H), to be the size of the largest set that is shattered
by H. (If H can shatter arbitrarily large sets, then VC(H) = o0.)



VC dimension: illustration

= Can the set H of linear classifiers in two dimensions shatter the
set below?

" For any labeling, H can correctly classify




VC dimension: illustration (cont’d)

" How about 4 points?
= No

" Thus, the largest set that H can shatter is of size 3, and hence
VC(H) = 3.



VC dimension: illustration (cont’d)

" |n order to prove that VC(H) is at least D, we need to show only
that there’s at least one set of size D that H can shatter (not
every set of size D)




Convergence results

" Theorem. Let H be given, and let D = VC(#). Then with probability at
least 1 — 9, we have that for all h € H,

(h) — |<O<\/—logg —log(15>

Thus, with probability at least 1 — 9, we also have that:
A D n 1 1
<e(h* —log — + —log = | .
e(h) <e(h*)+ O (\/n logD —I-nlog(S)

= Corollary. For |e(h) — £(h)| < 7 to hold for all h € H (and hence e(h) <
e(h*) 4+ 27) with probability at least 1 — 9, it suffices that n = O, s(D).

Usually the VC
dimension is roughly
linear in the number of
parameters
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